skip to main content


Search for: All records

Creators/Authors contains: "Couchman, Miles M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the results of a theoretical investigation of the stability and collective vibrations of a two-dimensional hydrodynamic lattice comprised of millimetric droplets bouncing on the surface of a vibrating liquid bath. We derive the linearized equations of motion describing the dynamics of a generic Bravais lattice, as encompasses all possible tilings of parallelograms in an infinite plane-filling array. Focusing on square and triangular lattice geometries, we demonstrate that for relatively low driving accelerations of the bath, only a subset of inter-drop spacings exist for which stable lattices may be achieved. The range of stable spacings is prescribed by the structure of the underlying wavefield. As the driving acceleration is increased progressively, the initially stationary lattices destabilize into coherent oscillatory motion. Our analysis yields both the instability threshold and the wavevector and polarization of the most unstable vibrational mode. The non-Markovian nature of the droplet dynamics renders the stability analysis of the hydrodynamic lattice more rich and subtle than that of its solid state counterpart. 
    more » « less
  2. null (Ed.)
    We present the results of a combined experimental and theoretical investigation of the stability of rings of millimetric droplets bouncing on the surface of a vibrating liquid bath. As the bath's vibrational acceleration is increased progressively, droplet rings are found to destabilize into a rich variety of dynamical states including steady rotational motion, periodic radial or azimuthal oscillations and azimuthal travelling waves. The instability observed is dependent on the ring's initial radius and drop number, and whether the drops are bouncing in- or out-of-phase relative to their neighbours. As the vibrational acceleration is further increased, more exotic dynamics emerges, including quasi-periodic motion and rearrangement into regular polygonal structures. Linear stability analysis and simulation of the rings based on the theoretical model of Couchman et al. ( J. Fluid Mech. , vol. 871, 2019, pp. 212–243) largely reproduce the observed behaviour. We demonstrate that the wave amplitude beneath each drop has a significant influence on the stability of the multi-droplet structures: the system seeks to minimize the mean wave amplitude beneath the drops at impact. Our work provides insight into the complex interactions and collective motions that arise in bouncing-droplet aggregates. 
    more » « less
  3. We present the results of an integrated experimental and theoretical investigation of the vertical motion of millimetric droplets bouncing on a vibrating fluid bath. We characterize experimentally the dependence of the phase of impact and contact force between a drop and the bath on the drop’s size and the bath’s vibrational acceleration. This characterization guides the development of a new theoretical model for the coupling between a drop’s vertical and horizontal motion. Our model allows us to relax the assumption of constant impact phase made in models based on the time-averaged trajectory equation of Moláček and Bush ( J. Fluid Mech. , vol. 727, 2013b, pp. 612–647) and obtain a robust horizontal trajectory equation for a bouncing drop that accounts for modulations in the drop’s vertical dynamics as may arise when it interacts with boundaries or other drops. We demonstrate that such modulations have a critical influence on the stability and dynamics of interacting droplet pairs. As the bath’s vibrational acceleration is increased progressively, initially stationary pairs destabilize into a variety of dynamical states including rectilinear oscillations, circular orbits and side-by-side promenading motion. The theoretical predictions of our variable-impact-phase model rationalize our observations and underscore the critical importance of accounting for variability in the vertical motion when modelling droplet–droplet interactions. 
    more » « less